The pathogenicity scoring system for mitochondrial tRNA mutations revisited
نویسندگان
چکیده
Confirming the pathogenicity of mitochondrial tRNA point mutations is one of the classical challenges in the field of mitochondrial medicine. In addition to genetic and functional studies, the evaluation of a genetic change using a pathogenicity scoring system is extremely useful to discriminate between disease-causing mutations from neutral polymorphisms. The pathogenicity scoring system is very robust for confirming pathogenicity, especially of mutations that show impaired activity in functional studies. However, mutations giving normal results using the same functional approaches are disregarded, and this compromises the power of the system to rule out pathogenicity. We propose to include a new criterion in the pathogenicity scoring systems regarding mutations which fail to show any mitochondrial defect in functional studies. To evaluate this proposal we characterized two mutations, m.8296A>G and m.8347A>G, in the mitochondrial tRNA(L) (ys) gene (MT-TK) using trans-mitochondrial cybrid analysis. m.8347A>G mutation severely impairs oxidative phosphorylation, suggesting that it is highly pathogenic. By contrast, the behavior of cybrids homoplasmic for the m.8296A>G mutation is similar to cybrids containing wild-type mitochondrial DNA (mtDNA). The results indicate that including not only positive but also negative outcomes of functional studies in the scoring system is critical for facilitating the diagnosis of this complex group of diseases.
منابع مشابه
Mitochondrial DNA Mutations, Pathogenicity and Inheritance
Mitochondria contain their own DNA (mtDNA), which codes for 13 proteins (all subunits of the respiratory chain complexes), 22 tRNAs and 2 rRNAs. Several mtDNA point mutations as well as deletions have been shown to be causative in well-defined mitochondrial disorders. A mixture of mutated and wild type mtDNA (heteroplasmy) is found in most of these disorders. Inheritance of mtDNA is maternal, a...
متن کاملMutational Analysis of Mitochondrial tRNA Genes in Patients with Asthma
BACKGROUND Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering, and cell fate determination. Most recently, mitochondrial dysfunction caused by mitochondrial mutations played important roles in the pathogenesis of asthma. However, the frequency of mitochondrial tRNA mutations in asthma is largely unknown. ...
متن کاملMitochondrial tRNA mutations may be infrequent in hepatocellular carcinoma patients.
Mitochondrial DNA mutations have been shown to play important roles in the pathogenesis of hepatocellular carcinoma (HCC). In particular, genes encoding mitochondrial tRNA (mt-tRNA) are hotspots for pathogenic mutations associated with HCC. Recently, an increasing number of studies have reported the involvement of such mutations in this disease. As a result, several mt-tRNA mutations associated...
متن کاملMitochondrial transfer RNA mutations and hypertension.
Mutations in mitochondrial DNA have been found to be associated with hypertension. Of these, mitochondrial transfer RNA (mt-tRNA) is a hot spot for these pathogenic mutations. It is generally believed that these mutations may result in the failure of mt-tRNA metabolism, thereby worsening mitochondrial dysfunction and resulting in hypertension. mt-tRNA is known for its high frequency of polymorp...
متن کاملThe role of mitochondrial tRNA mutations in lung cancer.
Alternations in mitochondrial genome resulting in mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondrial tRNA (mt-tRNA) is known for its high frequencies of polymorphisms and mutations, however, the roles of these mutations and polymorphisms in lung cancer are among heated debates. To evaluate the possible roles of reported mt-tRNA mutations in lung...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2014